Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virulence ; 15(1): 2333367, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38515333

RESUMO

Our immune system possesses sophisticated mechanisms to cope with invading microorganisms, while pathogens evolve strategies to deal with threats imposed by host immunity. Human plasma protein α1-antitrypsin (AAT) exhibits pleiotropic immune-modulating properties by both preventing immunopathology and improving antimicrobial host defence. Genetic associations suggested a role for AAT in candidemia, the most frequent fungal blood stream infection in intensive care units, yet little is known about how AAT influences interactions between Candida albicans and the immune system. Here, we show that AAT differentially impacts fungal killing by innate phagocytes. We observed that AAT induces fungal transcriptional reprogramming, associated with cell wall remodelling and downregulation of filamentation repressors. At low concentrations, the cell-wall remodelling induced by AAT increased immunogenic ß-glucan exposure and consequently improved fungal clearance by monocytes. Contrastingly, higher AAT concentrations led to excessive C. albicans filamentation and thus promoted fungal immune escape from monocytes and macrophages. This underscores that fungal adaptations to the host protein AAT can differentially define the outcome of encounters with innate immune cells, either contributing to improved immune recognition or fungal immune escape.


Assuntos
Candida albicans , beta-Glucanas , Humanos , Candida albicans/metabolismo , Interações Hospedeiro-Patógeno , Macrófagos/microbiologia , Monócitos/microbiologia , beta-Glucanas/metabolismo
2.
mBio ; 15(3): e0340923, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349176

RESUMO

Candida albicans can cause mucosal infections in humans. This includes oropharyngeal candidiasis, which is commonly observed in human immunodeficiency virus infected patients, and vulvovaginal candidiasis (VVC), which is the most frequent manifestation of candidiasis. Epithelial cell invasion by C. albicans hyphae is accompanied by the secretion of candidalysin, a peptide toxin that causes epithelial cell cytotoxicity. During vaginal infections, candidalysin-driven tissue damage triggers epithelial signaling pathways, leading to hyperinflammatory responses and immunopathology, a hallmark of VVC. Therefore, we proposed blocking candidalysin activity using nanobodies to reduce epithelial damage and inflammation as a therapeutic strategy for VVC. Anti-candidalysin nanobodies were confirmed to localize around epithelial-invading C. albicans hyphae, even within the invasion pocket where candidalysin is secreted. The nanobodies reduced candidalysin-induced damage to epithelial cells and downstream proinflammatory responses. Accordingly, the nanobodies also decreased neutrophil activation and recruitment. In silico mathematical modeling enabled the quantification of epithelial damage caused by candidalysin under various nanobody dosing strategies. Thus, nanobody-mediated neutralization of candidalysin offers a novel therapeutic approach to block immunopathogenic events during VVC and alleviate symptoms.IMPORTANCEWorldwide, vaginal infections caused by Candida albicans (VVC) annually affect millions of women, with symptoms significantly impacting quality of life. Current treatments are based on anti-fungals and probiotics that target the fungus. However, in some cases, infections are recurrent, called recurrent VVC, which often fails to respond to treatment. Vaginal mucosal tissue damage caused by the C. albicans peptide toxin candidalysin is a key driver in the induction of hyperinflammatory responses that fail to clear the infection and contribute to immunopathology and disease severity. In this pre-clinical evaluation, we show that nanobody-mediated candidalysin neutralization reduces tissue damage and thereby limits inflammation. Implementation of candidalysin-neutralizing nanobodies may prove an attractive strategy to alleviate symptoms in complicated VVC cases.


Assuntos
Candidíase Vulvovaginal , Candidíase , Proteínas Fúngicas , Anticorpos de Domínio Único , Humanos , Feminino , Candidíase Vulvovaginal/microbiologia , Qualidade de Vida , Anticorpos de Domínio Único/metabolismo , Candida albicans/metabolismo , Candidíase/microbiologia , Inflamação
3.
Eur J Immunol ; 54(1): e2350558, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37855177

RESUMO

Airway epithelial cells contribute to a variety of lung diseases including allergic asthma, where IL-4 and IL-13 promote activation of the transcription factor STAT6. This leads to goblet cell hyperplasia and the secretion of effector molecules by epithelial cells. However, the specific effect of activated STAT6 in lung epithelial cells is only partially understood. Here, we created a mouse strain to selectively investigate the role of constitutively active STAT6 in Club cells, a subpopulation of airway epithelial cells. CCSP-Cre_STAT6vt mice and bronchiolar organoids derived from these show an enhanced expression of the chitinase-like protein Chil4 (Ym2) and resistin-like molecules (Relm-α, -ß, -γ). In addition, goblet cells of these mice spontaneously secrete mucus into the bronchi. However, the activated epithelium resulted neither in impaired lung function nor conferred a protective effect against the migrating helminth Nippostrongylus brasiliensis. Moreover, CCSP-Cre_STAT6vt mice showed similar allergic airway inflammation induced by live conidia of the fungus Aspergillus fumigatus and similar recovery after influenza A virus infection compared to control mice. Together these results highlight that STAT6 signaling in Club cells induces the secretion of Relm proteins and mucus without impairing lung function, but this is not sufficient to confer protection against helminth or viral infections.


Assuntos
Asma , Resistina , Animais , Camundongos , Asma/metabolismo , Células Epiteliais/metabolismo , Pulmão , Muco/metabolismo , Resistina/metabolismo , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/metabolismo
4.
Eur J Immunol ; 53(10): e2350475, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37452620

RESUMO

Alveolar macrophages (alvMs) play an important role for maintenance of lung function by constant removal of cellular debris in the alveolar space. They further contribute to defense against microbial or viral infections and limit tissue damage during acute lung injury. alvMs arise from embryonic progenitor cells, seed the alveoli before birth, and have life-long self-renewing capacity. However, recruited monocytes may also help to restore the alvM population after depletion caused by toxins or influenza virus infection. At present, the population dynamics and cellular plasticity of alvMs during allergic lung inflammation is poorly defined. To address this point, we used a mouse model of Aspergillus fumigatus-induced allergic lung inflammation and observed that Th2-derived IL-4 and IL-13 caused almost complete disappearance of alvMs. This effect required STAT6 expression in alvMs and also occurred in various other settings of type 2 immunity-mediated lung inflammation or administration of IL-4 complexes to the lung. In addition, Th2 cells promoted conversion of alvMs to alternatively activated macrophages and multinucleated giant cells. Given the well-established role of alvMs for maintenance of lung function, this process may have implications for resolution of inflammation and tissue homeostasis in allergic asthma.


Assuntos
Asma , Pneumonia , Eosinofilia Pulmonar , Camundongos , Animais , Macrófagos Alveolares , Interleucina-4/metabolismo , Pulmão/metabolismo , Asma/metabolismo , Inflamação/metabolismo , Pneumonia/metabolismo
5.
PLoS Pathog ; 19(4): e1011296, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37018382

RESUMO

Gastrointestinal helminths are a major health threat worldwide. Alternatively activated macrophages (AAMs) have been shown to contribute to host protection during secondary helminth infections. AAMs express effector molecules that depend on activation of the IL-4- or IL-13-induced transcription factor signal transducer and activator of transcription 6 (STAT6). However, the specific role of STAT6-regulated genes like Arginase-1 (Arg1) from AAMs or STAT6-regulated genes in other cell types for host protection remains unclear. To address this point, we generated mice expressing STAT6 only in macrophages (Mac-STAT6 mouse). In the model of Heligmosomoides polygyrus bakeri (Hpb) infection, Mac-STAT6 mice could not trap larvae in the submucosa of the small intestine after secondary infection. Further, mice lacking Arg1 in hematopoietic and endothelial cells were still protected from secondary Hpb infection. On the other hand, specific deletion of IL-4/IL-13 in T cells blunted AAM polarization, activation of intestinal epithelial cells (IECs) and protective immunity. Deletion of IL-4Rα on IEC also caused loss of larval trapping while AAM polarization remained intact. These results show that Th2-dependent and STAT6-regulated genes in IECs are required and AAMs are not sufficient for protection against secondary Hpb infection by mechanisms that remain to be investigated.


Assuntos
Coinfecção , Nematospiroides dubius , Infecções por Strongylida , Camundongos , Animais , Nematospiroides dubius/metabolismo , Camundongos Knockout , Interleucina-4/genética , Interleucina-4/metabolismo , Interleucina-13/metabolismo , Larva/metabolismo , Células Endoteliais/metabolismo , Células Epiteliais/metabolismo , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/metabolismo , Infecções por Strongylida/genética
6.
Nat Immunol ; 24(2): 295-308, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36604548

RESUMO

It has been shown that innate immune responses can adopt adaptive properties such as memory. Whether T cells utilize innate immune signaling pathways to diversify their repertoire of effector functions is unknown. Gasdermin E (GSDME) is a membrane pore-forming molecule that has been shown to execute pyroptotic cell death and thus to serve as a potential cancer checkpoint. In the present study, we show that human T cells express GSDME and, surprisingly, that this expression is associated with durable viability and repurposed for the release of the alarmin interleukin (IL)-1α. This property was restricted to a subset of human helper type 17 T cells with specificity for Candida albicans and regulated by a T cell-intrinsic NLRP3 inflammasome, and its engagement of a proteolytic cascade of successive caspase-8, caspase-3 and GSDME cleavage after T cell receptor stimulation and calcium-licensed calpain maturation of the pro-IL-1α form. Our results indicate that GSDME pore formation in T cells is a mechanism of unconventional cytokine release. This finding diversifies our understanding of the functional repertoire and mechanistic equipment of T cells and has implications for antifungal immunity.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Células Th17 , Humanos , Caspase 1/metabolismo , Gasderminas , Imunidade Inata , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose
8.
mBio ; 13(4): e0123922, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35695427

RESUMO

Eosinophilia is associated with various persisting inflammatory diseases and often coincides with chronic fungal infections or fungal allergy as in the case of allergic bronchopulmonary aspergillosis (ABPA). Here, we show that intranasal administration of live Aspergillus fumigatus conidia causes fatal lung damage in eosinophilic interleukin-5 (IL-5)-transgenic mice. To further investigate the activation of eosinophils by A. fumigatus, we established a coculture system of mouse bone marrow-derived eosinophils (BMDE) with different A. fumigatus morphotypes and analyzed the secretion of cytokines, chemokines, and eicosanoids. A. fumigatus-stimulated BMDE upregulated expression of CD11b and downregulated CD62L and CCR3. They further secreted several proinflammatory mediators, including IL-4, IL-13, IL-18, macrophage inflammatory protein-1α (MIP-1α)/CC chemokine ligand 3 (CCL3), MIP-1ß/CCL4, and thromboxane. This effect required direct interaction and adherence between eosinophils and A. fumigatus, as A. fumigatus culture supernatants or A. fumigatus mutant strains with impaired adhesion elicited a rather poor eosinophil response. Unexpectedly, canonical Toll-like receptor (TLR) or C-type-lectin receptor (CLR) signaling was largely dispensable, as the absence of MYD88, TRIF, or caspase recruitment domain-containing protein 9 (CARD9) resulted in only minor alterations. However, transcriptome analysis indicated a role for the PI3K-AKT-mTOR pathway in A. fumigatus-induced eosinophil activation. Correspondingly, we could show that phosphatidylinositol 3-kinase (PI3K) inhibitors successfully prevent A. fumigatus-induced eosinophil activation. The PI3K pathway in eosinophils may therefore serve as a potential drug target to interfere with undesired eosinophil activation in fungus-elicited eosinophilic disorders. IMPORTANCE Allergic bronchopulmonary aspergillosis (ABPA) is caused by the fungus Aspergillus fumigatus, afflicts about five million patients globally, and is still a noncurable disease. ABPA is associated with pronounced lung eosinophilia. Activated eosinophils enhance the inflammatory response not only by degranulation of toxic proteins but also by secretion of small effector molecules. Receptors and signaling pathways involved in activation of eosinophils by A. fumigatus are currently unknown. Here, we show that A. fumigatus-elicited activation of eosinophils requires direct cell-cell contact and results in modulation of cell surface markers and rapid secretion of cytokines, chemokines, and lipid mediators. Unexpectedly, this activation occurred independently of canonical Toll-like receptor or C-type lectin receptor signaling. However, transcriptome analysis indicated a role for the PI3K-AKT-mTOR pathway, and PI3K inhibitors successfully prevented A. fumigatus-induced eosinophil activation. The PI3K pathway may therefore serve as a potential drug target to interfere with undesired eosinophil activation in fungus-elicited eosinophilic disorders.


Assuntos
Aspergilose Broncopulmonar Alérgica , Eosinofilia , Fosfatidilinositol 3-Quinase , Animais , Aspergilose Broncopulmonar Alérgica/genética , Aspergilose Broncopulmonar Alérgica/metabolismo , Aspergillus fumigatus , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Eosinofilia/genética , Eosinofilia/metabolismo , Eosinófilos/metabolismo , Lectinas Tipo C/metabolismo , Camundongos , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Mitogênicos/metabolismo , Serina-Treonina Quinases TOR , Receptores Toll-Like/metabolismo
9.
J Immunol ; 208(3): 732-744, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34996839

RESUMO

Eosinophils are potent innate effector cells associated mainly with type 2 immune responses elicited by helminths and allergens. Their activity needs to be tightly controlled to prevent severe inflammation and tissue damage. Eosinophil degranulation and secretion of inflammatory effector molecules, including cytokines, chemokines, and lipid mediators, can be regulated by activating and inhibitory receptors on the cell surface. In this study, we investigated the modulation of proliferation, apoptosis, gene expression, and cytokine/chemokine secretion from IL-33-activated Mus musculus eosinophils on cross-linking of the transmembrane receptor Sialic acid-binding Ig-like lectin F (Siglec-F). Siglec-F contains an ITIM plus an ITIM-like motif in its intracellular tail and is mainly regarded as an inhibitory and apoptosis-inducing receptor. In vitro costimulation of bone marrow-derived eosinophils with anti-Siglec-F and IL-33 compared with treatment with either alone led to enhanced STAT6 phosphorylation, stronger induction of hypoxia/glycolysis-related proinflammatory genes, and elevated secretion of type 2 cytokines (IL-4, IL-13) and chemokines (CCL3, CCL4) with only minor effects on proliferation and apoptosis. Using a competitive mixed bone marrow chimera approach with wild-type and Siglec-F-deficient eosinophils, we observed no evidence for Siglec-F-regulated inhibition of Aspergillus fumigatus-elicited lung eosinophilia. Truncation of the Siglec-F cytoplasmic tail, but not mutation of the ITIM and ITIM-like motifs, ablated the effect of enhanced cytokine/chemokine secretion. This provides evidence for an ITIM phosphorylation-independent signaling pathway from the cytoplasmic tail of the Siglec-F receptor that enhances effector molecule release from activated eosinophils.


Assuntos
Aspergilose/imunologia , Eosinofilia/imunologia , Eosinófilos/imunologia , Interleucina-33/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Animais , Apoptose/imunologia , Aspergilose/patologia , Aspergillus fumigatus/imunologia , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Células Cultivadas , Quimiocina CCL3/metabolismo , Quimiocina CCL4/metabolismo , Humanos , Interleucina-13/metabolismo , Interleucina-33/imunologia , Interleucina-4/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Fator de Transcrição STAT6/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética
10.
Proc Natl Acad Sci U S A ; 117(11): 6003-6013, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32111691

RESUMO

Filamentous fungi, such as Neurospora crassa, are very efficient in deconstructing plant biomass by the secretion of an arsenal of plant cell wall-degrading enzymes, by remodeling metabolism to accommodate production of secreted enzymes, and by enabling transport and intracellular utilization of plant biomass components. Although a number of enzymes and transcriptional regulators involved in plant biomass utilization have been identified, how filamentous fungi sense and integrate nutritional information encoded in the plant cell wall into a regulatory hierarchy for optimal utilization of complex carbon sources is not understood. Here, we performed transcriptional profiling of N. crassa on 40 different carbon sources, including plant biomass, to provide data on how fungi sense simple to complex carbohydrates. From these data, we identified regulatory factors in N. crassa and characterized one (PDR-2) associated with pectin utilization and one with pectin/hemicellulose utilization (ARA-1). Using in vitro DNA affinity purification sequencing (DAP-seq), we identified direct targets of transcription factors involved in regulating genes encoding plant cell wall-degrading enzymes. In particular, our data clarified the role of the transcription factor VIB-1 in the regulation of genes encoding plant cell wall-degrading enzymes and nutrient scavenging and revealed a major role of the carbon catabolite repressor CRE-1 in regulating the expression of major facilitator transporter genes. These data contribute to a more complete understanding of cross talk between transcription factors and their target genes, which are involved in regulating nutrient sensing and plant biomass utilization on a global level.


Assuntos
Parede Celular/metabolismo , Proteínas Fúngicas/metabolismo , Neurospora crassa/genética , Pectinas/metabolismo , Polissacarídeos/metabolismo , Fatores de Transcrição/metabolismo , Biocombustíveis , Biomassa , Repressão Catabólica , Parede Celular/química , Regulação Fúngica da Expressão Gênica , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Neurospora crassa/metabolismo , RNA-Seq
11.
Eur J Immunol ; 50(7): 1044-1056, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32108934

RESUMO

Repeated inhalation of airborne conidia derived from the fungus Aspergillus fumigatus (Af) can lead to a severe eosinophil-dominated inflammatory condition of the lung termed allergic bronchopulmonary aspergillosis (ABPA). ABPA affects about 5 million individuals worldwide and the mechanisms regulating lung pathology in ABPA are poorly understood. Here, we used a mouse model of ABPA to investigate the role of eosinophils and T cell-derived IL-4/IL-13 for induction of allergic lung inflammation. Selective deletion of IL-4/IL-13 in T cells blunted the Af-induced lung eosinophilia and further resulted in lower expression of STAT6-regulated chemokines and effector proteins such as Arginase 1, Relm-α, Relm-ß, and Muc5a/c. Eosinophil-deficient ΔdblGata mice showed lower IL-4 expression in the lung and the number of Th2 cells in the lung parenchyma was reduced. However, expression of the goblet cell markers Clca1 and Muc5a/c, abundance of mucin-positive cells, as well as weight gain of lungs were comparable between Af-challenged ΔdblGata and WT mice. Based on these results, we conclude that T cell-derived IL-4/IL-13 is essential for Af-induced lung eosinophilia and inflammation while eosinophils may play a more subtle immunomodulatory role and should not simply be regarded as pro-inflammatory effector cells in ABPA.


Assuntos
Aspergilose Broncopulmonar Alérgica/imunologia , Aspergillus fumigatus/imunologia , Eosinófilos/imunologia , Pulmão/imunologia , Células Th2/imunologia , Animais , Aspergilose Broncopulmonar Alérgica/genética , Aspergilose Broncopulmonar Alérgica/patologia , Modelos Animais de Doenças , Eosinófilos/patologia , Interleucina-13/genética , Interleucina-13/imunologia , Interleucina-4/imunologia , Pulmão/patologia , Camundongos , Camundongos Knockout , Mucina-5AC/genética , Mucina-5AC/imunologia , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/imunologia , Células Th2/patologia
12.
Eur J Immunol ; 48(11): 1786-1795, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30183074

RESUMO

Eosinophils are innate effector cells associated with allergic inflammation. Their development and survival is largely dependent on IL-5 and the common beta chain (ßc ) of the IL-5 receptor that serves as docking site for several proteins that mediate down-stream signaling cascades including JAK/STAT, PI3 kinase, NFκB, and RAS-MAP kinase pathways. The relative contribution of these signaling pathways for eosinophil development and homeostasis in vivo are poorly understood. Here, we investigated the role of GRB2, an adaptor protein that binds to ßc and other proteins and elicits the RAS-MAP kinase pathway. By using GRB2 inhibitors and inducible deletion of the Grb2 gene in mouse eosinophils we demonstrate that GRB2 plays a critical role for development of eosinophils from bone marrow precursors. Furthermore, Aspergillus fumigatus-induced allergic lung eosinophilia was significantly reduced in mice with induced genetic deletion of Grb2. Our results indicate that GRB2 is important for eosinophil development in steady-state conditions and during allergic inflammation. Based on these findings pharmacologic GRB2 inhibitors may have the potential to dampen tissue eosinophilia in various eosinophil-associated diseases.


Assuntos
Eosinofilia/imunologia , Eosinófilos/imunologia , Proteína Adaptadora GRB2/imunologia , Pulmão/imunologia , Transdução de Sinais/imunologia , Animais , Aspergillus fumigatus/imunologia , Medula Óssea/imunologia , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/imunologia , Proteínas ras/imunologia
13.
Biotechnol Biofuels ; 10: 149, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28616073

RESUMO

BACKGROUND: Pectin is an abundant component in many fruit and vegetable wastes and could therefore be an excellent resource for biorefinery, but is currently underutilized. Fungal pectinases already play a crucial role for industrial purposes, such as for foodstuff processing. However, the regulation of pectinase gene expression is still poorly understood. For an optimal utilization of plant biomass for biorefinery and biofuel production, a detailed analysis of the underlying regulatory mechanisms is warranted. In this study, we applied the genetic resources of the filamentous ascomycete species Neurospora crassa to screen for transcription factors that play a major role in pectinase induction. RESULTS: The pectin degradation regulator-1 (PDR-1) was identified through a transcription factor mutant screen in N. crassa. The Δpdr-1 mutant exhibited a severe growth defect on pectin and all tested pectin-related poly- and monosaccharides. Biochemical as well as transcriptional analyses of WT and the Δpdr-1 mutant revealed that while PDR-1-mediated gene induction was dependent on the presence of l-rhamnose, it also strongly affected the degradation of the homogalacturonan backbone. The expression of the endo-polygalacturonase gh28-1 was greatly reduced in the Δpdr-1 mutant, while the expression levels of all pectate lyase genes increased. Moreover, a pdr-1 overexpression strain displayed substantially increased pectinase production. Promoter analysis of the PDR-1 regulon allowed refinement of the putative PDR-1 DNA-binding motif. CONCLUSIONS: PDR-1 is highly conserved in filamentous ascomycete fungi and is present in many pathogenic and industrially important fungi. Our data demonstrate that the function of PDR-1 in N. crassa combines features of two recently described transcription factors in Aspergillus niger (RhaR) and Botrytis cinerea (GaaR). The results presented in this study contribute to a broader understanding of how pectin degradation is orchestrated in filamentous fungi and how it could be manipulated for optimized pectinase production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...